\(\int \frac {x^4}{1-2 x^4+x^8} \, dx\) [302]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 16, antiderivative size = 27 \[ \int \frac {x^4}{1-2 x^4+x^8} \, dx=\frac {x}{4 \left (1-x^4\right )}-\frac {\arctan (x)}{8}-\frac {\text {arctanh}(x)}{8} \]

[Out]

1/4*x/(-x^4+1)-1/8*arctan(x)-1/8*arctanh(x)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.312, Rules used = {28, 294, 218, 212, 209} \[ \int \frac {x^4}{1-2 x^4+x^8} \, dx=-\frac {\arctan (x)}{8}-\frac {\text {arctanh}(x)}{8}+\frac {x}{4 \left (1-x^4\right )} \]

[In]

Int[x^4/(1 - 2*x^4 + x^8),x]

[Out]

x/(4*(1 - x^4)) - ArcTan[x]/8 - ArcTanh[x]/8

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^4}{\left (-1+x^4\right )^2} \, dx \\ & = \frac {x}{4 \left (1-x^4\right )}+\frac {1}{4} \int \frac {1}{-1+x^4} \, dx \\ & = \frac {x}{4 \left (1-x^4\right )}-\frac {1}{8} \int \frac {1}{1-x^2} \, dx-\frac {1}{8} \int \frac {1}{1+x^2} \, dx \\ & = \frac {x}{4 \left (1-x^4\right )}-\frac {1}{8} \tan ^{-1}(x)-\frac {1}{8} \tanh ^{-1}(x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.15 \[ \int \frac {x^4}{1-2 x^4+x^8} \, dx=\frac {1}{16} \left (-\frac {4 x}{-1+x^4}-2 \arctan (x)+\log (1-x)-\log (1+x)\right ) \]

[In]

Integrate[x^4/(1 - 2*x^4 + x^8),x]

[Out]

((-4*x)/(-1 + x^4) - 2*ArcTan[x] + Log[1 - x] - Log[1 + x])/16

Maple [A] (verified)

Time = 0.09 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.04

method result size
risch \(-\frac {x}{4 \left (x^{4}-1\right )}-\frac {\arctan \left (x \right )}{8}-\frac {\ln \left (x +1\right )}{16}+\frac {\ln \left (x -1\right )}{16}\) \(28\)
default \(-\frac {1}{16 \left (x +1\right )}-\frac {\ln \left (x +1\right )}{16}+\frac {x}{8 x^{2}+8}-\frac {\arctan \left (x \right )}{8}-\frac {1}{16 \left (x -1\right )}+\frac {\ln \left (x -1\right )}{16}\) \(42\)
parallelrisch \(-\frac {i \ln \left (x +i\right ) x^{4}-i \ln \left (x -i\right ) x^{4}-\ln \left (x -1\right ) x^{4}+\ln \left (x +1\right ) x^{4}-i \ln \left (x +i\right )+i \ln \left (x -i\right )+\ln \left (x -1\right )-\ln \left (x +1\right )+4 x}{16 \left (x^{4}-1\right )}\) \(79\)

[In]

int(x^4/(x^8-2*x^4+1),x,method=_RETURNVERBOSE)

[Out]

-1/4*x/(x^4-1)-1/8*arctan(x)-1/16*ln(x+1)+1/16*ln(x-1)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 43 vs. \(2 (19) = 38\).

Time = 0.24 (sec) , antiderivative size = 43, normalized size of antiderivative = 1.59 \[ \int \frac {x^4}{1-2 x^4+x^8} \, dx=-\frac {2 \, {\left (x^{4} - 1\right )} \arctan \left (x\right ) + {\left (x^{4} - 1\right )} \log \left (x + 1\right ) - {\left (x^{4} - 1\right )} \log \left (x - 1\right ) + 4 \, x}{16 \, {\left (x^{4} - 1\right )}} \]

[In]

integrate(x^4/(x^8-2*x^4+1),x, algorithm="fricas")

[Out]

-1/16*(2*(x^4 - 1)*arctan(x) + (x^4 - 1)*log(x + 1) - (x^4 - 1)*log(x - 1) + 4*x)/(x^4 - 1)

Sympy [A] (verification not implemented)

Time = 0.06 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.96 \[ \int \frac {x^4}{1-2 x^4+x^8} \, dx=- \frac {x}{4 x^{4} - 4} + \frac {\log {\left (x - 1 \right )}}{16} - \frac {\log {\left (x + 1 \right )}}{16} - \frac {\operatorname {atan}{\left (x \right )}}{8} \]

[In]

integrate(x**4/(x**8-2*x**4+1),x)

[Out]

-x/(4*x**4 - 4) + log(x - 1)/16 - log(x + 1)/16 - atan(x)/8

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.00 \[ \int \frac {x^4}{1-2 x^4+x^8} \, dx=-\frac {x}{4 \, {\left (x^{4} - 1\right )}} - \frac {1}{8} \, \arctan \left (x\right ) - \frac {1}{16} \, \log \left (x + 1\right ) + \frac {1}{16} \, \log \left (x - 1\right ) \]

[In]

integrate(x^4/(x^8-2*x^4+1),x, algorithm="maxima")

[Out]

-1/4*x/(x^4 - 1) - 1/8*arctan(x) - 1/16*log(x + 1) + 1/16*log(x - 1)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.07 \[ \int \frac {x^4}{1-2 x^4+x^8} \, dx=-\frac {x}{4 \, {\left (x^{4} - 1\right )}} - \frac {1}{8} \, \arctan \left (x\right ) - \frac {1}{16} \, \log \left ({\left | x + 1 \right |}\right ) + \frac {1}{16} \, \log \left ({\left | x - 1 \right |}\right ) \]

[In]

integrate(x^4/(x^8-2*x^4+1),x, algorithm="giac")

[Out]

-1/4*x/(x^4 - 1) - 1/8*arctan(x) - 1/16*log(abs(x + 1)) + 1/16*log(abs(x - 1))

Mupad [B] (verification not implemented)

Time = 0.02 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.78 \[ \int \frac {x^4}{1-2 x^4+x^8} \, dx=-\frac {\mathrm {atan}\left (x\right )}{8}-\frac {\mathrm {atanh}\left (x\right )}{8}-\frac {x}{4\,\left (x^4-1\right )} \]

[In]

int(x^4/(x^8 - 2*x^4 + 1),x)

[Out]

- atan(x)/8 - atanh(x)/8 - x/(4*(x^4 - 1))